
CASE STUDY

Optimizing Arches ORM: 99% Faster
PostgreSQL Queries with Galvia Digital

AT A GLANCE
Flax & Teal developers on the Coral project were blocked
by sluggish Arches ORM queries, with response times over
30 seconds. Galvia Digital engineered a performance-first
solution, codenamed “Emerald”, that optimized the
PostgreSQL query layer, slashing times to 300
milliseconds and boosting speed by 99% without
interrupting ongoing development.

Galvia Digital’s work on Arches ORM has
been a game-changer for our teams and
customers, and will benefit any future
project we run on the platform. As
always, they are creative, adaptable,
collaborative, and technically solid.
Phil Weir, Director, Flax & Teal

CHALLENGES SOLUTIONS
Arches ORM was returning bloated
data in 25–30 seconds
Limited filters forced developers to
manually sort full datasets
Inefficient models caused query and
performance bottlenecks
Sparse documentation made
onboarding and upgrades tough
Risk of disrupting global teams relying
on active workflows

Galvia Digital developed “Emerald,” a
performance-first overhaul of the Arches
ORM query process. By replacing heavy
default models with lean, upgradeable ones
and introducing a dynamic query builder,
the team enabled efficient, filter-rich
PostgreSQL queries. Native filtering was
added at the ORM layer, and all changes
integrated seamlessly with existing
systems, delivering dramatic speed gains
without disrupting active workflows.

galviadigital.com

520
HOURS
Saved thanks to Galvia
Digital’s Developers

99%
SPEED
INCREASE

“

“

Project Duration: 3 Months

CASE STUDY

01 Massive
Performance Gains

Query times dropped from 30 seconds to as little as
300ms, delivering a 99% speed improvement with
no disruption to ongoing development.

02 Real-Time Data
Access

Optimized query models and filtering enabled real-
time responses, empowering developers to work
faster and more efficiently.

04 Seamless System
Integration

All improvements were fully compatible with existing
tools, ensuring legacy workflows continued
uninterrupted while unlocking long-term
maintainability.

Reduced friction in querying and data retrieval
boosted team productivity across the Coral project
and simplified future extensions.

RESULTS & BENEFITS

03 Elevated Developer
Experience

POSTGRESQL PYTHON ARCHES SQLITE ORM

How can we help?
Bespoke Software Solutions
For Your Business. Contact
Us For a Free Diagnostic
Call!

+44 77 330 100 28

info@galviadigital.com

galviadigital.com

TECH INVOLVED

UNIT TESTING

info@galviadigital.com+44 77 330 100 28

CASE STUDY

Arches is an open-source platform built to manage cultural heritage data at scale. It’s
designed around structured, ontology-rich records. Things like historic buildings,
protected sites, and conservation information.

Under the hood, Arches uses PostgreSQL as its database and ORM patterns to connect its
models to SQL. That setup allows developers to work with high-level data structures while
the system handles all the translation to database queries in the background.

Coral is a custom implementation of Arches developed for a government body. It builds on
the Arches core but adds a layer of accessibility for non-technical users.

Through workflows and custom interfaces, Coral lets archaeologists, planning officers,
and other civil servants interact with structured records in a way that feels natural, without
needing to understand the underlying schema or database design.

While Arches provides the foundation, Coral shapes it into a day-to-day working tool.

WHAT IS ARCHES & CORAL?

info@galviadigital.com+44 77 330 100 28

CASE STUDY

PROJECT OVERVIEW
The Coral project plays a vital role in helping organisations protect and
manage cultural heritage data. From historic buildings and
archaeological sites to contributor notes and geospatial references,
Coral deals with complex, structured information. It runs on Arches, a
platform tailored for ontology-rich datasets. Arches does a lot well, but
under the hood, the system was dragging.

WHAT WAS HAPPENING?
The root issue was Arches’ ORM, the layer that pulled data from the
database. It loaded full records by default, even when only a small
piece was needed. Models were packed with extra logic, and filtering
only supported basic “equals,” forcing developers to load full datasets
and filter in memory.

The ORM lived in a single, undocumented file containing loops and
repeated code. It was hard to read, debug, or update, making
onboarding slow and changes risky.

Developers were running into serious
bottlenecks when they queried data.

Basic filters were taking upwards of 25 to 30
seconds to return results. Even small pages took
ages to load. For a team trying to move quickly,
iterate, and ship updates, that’s a killer.

These weren’t just minor hiccups. They were
bringing day-to-day work to a standstill.

Flax & Teal brought Galvia Digital in to tackle
this head-on. Not to replace Arches or overhaul
Coral, but to go straight at the root of the issue:
query speed.

We focused entirely on performance. After three
months of hands-on work, we delivered
Emerald. a lightweight, developer-friendly query
layer that made Arches fast again without
breaking a thing.

Flax & Teal is a leading software consultancy
dedicated to the digital preservation of cultural
heritage. As registered suppliers and
contributors to Arches, an open-source
platform designed for managing immovable
heritage assets like historic buildings and
archaeological sites, Flax & Teal works with
institutions across government, academia, and
conservation to securely manage and enrich
complex datasets.

Duration: The project was delivered in under
3 months

https://flaxandteal.co.uk/arches-work/
https://www.archesproject.org/

CASE STUDY

UNDERSTANDING THE PROBLEM
We started with a deep investigation into how Arches ORM was structured.
We studied the query functions, examined what was actually happening in filtering methods like where, find,
all, and first, and bench-marked the time and complexity of those operations.

What we found: The default models were bloated with unused methods, loops were slowing everything
down, and every query loaded the full record, even when only a subset of fields was needed. There were
also no built-in ways to do greater than/less than filtering. Developers had to load every record and filter
manually in Python.

We traced load times back to specific parts of the ORM, especially around how the TileProxyModel and
from_resource methods were used. The structure wasn’t designed for performance or flexibility, so we broke
it down, tested the time impact of every piece, and worked from the bottom up.

THE CHALLENGES
Querying even small data sets took 25–30 seconds
Models were overloaded with logic and methods not always needed
Filtering was basic: only "equals" was supported by default
Developers had to load entire datasets and filter in memory
Code was hard to read, undocumented, and tangled into a single large file
Debugging and onboarding new devs was difficult
The existing system couldn’t be changed too much without breaking live projects

OUR SOLUTIONS
1. Streamlining the Models
We started by overhauling the models that power the
ORM. Instead of always pulling in the full object structure,
we introduced lean models designed to return only the
necessary data. If a developer asked for something more
complex that couldn’t be handled by the new model, the
model could automatically switch to the full version
behind the scenes. This change alone cut down the size
and weight of most queries dramatically, improving
response time right out of the gate.

info@galviadigital.com+44 77 330 100 28

2. Smarter Filtering and Query Logic
Next, we addressed one of the biggest developer pain
points: filtering. The original system only supported
exact matches. We added built-in support for dynamic
filters and range queries so developers could finally
run commands like person.where(age > 5 & age < 10)
without fetching every record and sorting manually in
code. We also removed duplicate loops and
unnecessary operations in the existing ORM logic,
cutting out dead weight and improving clarity.

We bypassed the TileProxyModel, which was one of
the main sources of overhead. Direct model access
replaced proxy calls wherever possible, slashing the
time it took to run each query. These backend
changes made the system not only faster but also
easier to extend.

3. Compatibility and Integration
We wrapped Emerald in a compatibility layer that made it
work seamlessly with Coral’s existing setup. No changes
were needed to admin panels, legacy systems, or front-end
tools. Developers kept working the same way, just faster. The
full solution was built in Python with PostgreSQL, combining
Django ORM principles with custom SQL builders to
modernize performance without breaking what already
worked.

Galvia Digital work on Arches ORM
has been a game-changer for our
teams and customers, and will
benefit any future project we run on
the platform. As always, they are
creative, adaptable, collaborative,
and technically solid.

info@galviadigital.com+44 77 330 100 28

CASE STUDY

BUSINESS
OUTCOMES
After three months, Coral’s
developers weren’t just getting
faster queries, they were working
smoother across the board. Queries
that once took 30 seconds dropped
to milliseconds, pages loaded
instantly, and filters delivered results
without extra work.

Teams didn’t need to change
anything. Emerald gave them better
tools, better speed, and a platform
that’s now easier to build on and
ready for whatever comes next.

How can we help?
Galvia Digital helps
organisations tackle complex
performance and scalability
challenges in data-heavy
systems. We specialise in
optimising query layers,
modernising legacy
infrastructure, and building tools
that make life easier for
developers and decision-makers
alike.

If your platform is slowing your
team down, we can help speed
things up—without tearing
everything down to start over.

Phil Weir,
Director,
Flax & Teal

